Effect of high volume hemodiafiltration on oxygenation and ventilatory function in mechanically ventilated patients with Sepsis: a randomized controlled trial

Document Type : Original papers

Authors

Department of Anesthesiology, Intensive Care, and Pain Management, Faculty of medicine, Assiut University, Assiut, Egypt

Abstract

Background: High volume hemodiafiltration (HVHDF) has been used in patients with sepsis to potentially improve hemodynamics and increase survival rates. We aimed to assess the effect of HVHDF on oxygenation in mechanically ventilated septic patients. We hypothesized that HVHDF could improve oxygenation. Methods: In this prospective, non-blinded, single-institution randomized trial, forty patients were randomly assigned to receive HVHDF (n = 20) or not (n = 20). Patients in the HVHDF group received HVHDF at a prescribed dose of 70 ml/kg/ hours for 48 hours in addition to their usual treatments.  Results: At 24 hours and 48 hours after the initiation of HVHDF, the arterial oxygen pressure (PaO2), the ratio of arterial oxygen pressure to the fraction of inspired oxygen (PaO2/ FiO2 ratio), and jugular venous oxygen saturation (SJVO2) were all significantly higher in the HVHDF group compared to the non-HVHDF group (P < 0.05). Compared to the non-HVHDF group, the alveolar-arterial oxygen pressure difference (PA-aO2) and serum Interleukin- 6 were significantly lower, dynamic compliance increased more significantly, and plateau pressure decreased more significantly in the HVHDF group (P < 0.05) at 48 hours after initiation of HVHDF.  
Duration for weaning from mechanical ventilation (MV) was significantly shorter in the HVHDF group (P = 0.001). However, serum lactate levels, success of weaning from MV, and 28-day survival were not different between the groups (P > 0.05). Conclusions: In mechanically ventilated septic patients, treatment with HVHDF, in addition to standard therapies, improved oxygenation and ventilatory function, and reduced the duration of MV.

Keywords


[1] Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov. 2023 Dec 19;9(1):465. doi: 10.1038/s41420-023-01766-7. PMID: 38114466; PMCID: PMC10730904.
[2] Napolitano LM. Sepsis 2018: Definitions and Guideline Changes. Surg Infect (Larchmt). 2018 Feb/Mar;19(2):117-125. doi: 10.1089/sur.2017.278. PMID: 29447109.
[3] Khandelwal A, Yerigeri K, Lou R, Raina R. High-Volume Hemodiafiltration with Step-Down Approach versus Standard-of-Care Continuous Renal Replacement Therapy Approach in Critically Ill Burn Patients. Blood Purif. 2023;52(4):341-344. doi: 10.1159/000527681. Epub 2022 Dec 14. PMID: 36516796.
[4] Servillo G, Vargas M, Pastore A, Procino A, Iannuzzi M, Capuano A, et al. Immunomodulatory effect of continuous venovenous hemofiltration during sepsis: preliminary data. Biomed Res Int. 2013;2013:108951. doi: 10.1155/2013/108951. Epub 2013 Jul 23. PMID: 23971020; PMCID: PMC3736510.
[5] Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000 Jul 1;356(9223):26-30. doi: 10.1016/S0140-6736(00)02430-2. PMID: 10892761.
[6] Cornejo R, Downey P, Castro R, Romero C, Regueira T, Vega J, et al. High-volume hemofiltration as salvage therapy in severe hyperdynamic septic shock. Intensive Care Med. 2006 May;32(5):713-722. doi: 10.1007/s00134-006-0118-5. Epub 2006 Mar 21. PMID: 16550372.
[7] Joannes-Boyau O, Rapaport S, Bazin R, Fleureau C, Janvier G. Impact of high volume hemofiltration on hemodynamic disturbance and outcome during septic shock. ASAIO J. 2004 Jan-Feb;50(1):102-109. doi: 10.1097/01.mat.0000104846.27116.ea. PMID: 14763500.
[8] Ren HS, Gao SX, Wang CT, Chu YF, Jiang JJ, Zhang JC, et al. Effects of high-volume hemofiltration on alveolar-arterial oxygen exchange in patients with refractory septic shock. World J Emerg Med. 2011;2(2):127-131. doi: 10.5847/wjem.j.1920-8642.2011.02.009. PMID: 25214997; PMCID: PMC4129696.       
[9] Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019 Mar 21;7:2050312119835043. doi: 10.1177/2050312119835043. PMID: 30915218; PMCID: PMC6429642.        
[10] DiCarlo JV, Alexander SR, Agarwal R, Schiffman JD. Continuous veno-venous hemofiltration may improve survival from acute respiratory distress syndrome after bone marrow transplantation or chemotherapy. J Pediatr Hematol Oncol. 2003 Oct;25(10):801-805. doi: 10.1097/00043426-200310000-00012. PMID: 14528104.           
[11] Dickie H, Tovey L, Berry W, Ostermann M. Revised algorithm for heparin anticoagulation during continuous renal replacement therapy. Crit Care. 2015 Oct 27;19:376. doi: 10.1186/s13054-015-1099-y. PMID: 26502904; PMCID: PMC4624355.          
[12] Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998 Apr;26(4):645-650. doi: 10.1097/00003246-199804000-00010. PMID: 9559600.  
[13] Grootendorst AF, van Bommel EF, van der Hoven B, van Leengoed LA, van Osta AL. High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med. 1992;18(4):235-240. doi: 10.1007/BF01709839. PMID: 1430589.      
[14] Grootendorst AF, van Bommel EF, van Leengoed LA, van Zanten AR, Huipen HJ, Groeneveld AB. Infusion of ultrafiltrate from endotoxemic pigs depresses myocardial performance in normal pigs. J Crit Care. 1993 Sep;8(3):161-169. doi: 10.1016/0883-9441(93)90022-d. PMID: 8275161.          
[15] Rogiers P, Zhang H, Smail N, Pauwels D, Vincent JL. Continuous venovenous hemofiltration improves cardiac performance by mechanisms other than tumor necrosis factor-alpha attenuation during endotoxic shock. Crit Care Med. 1999 Sep;27(9):1848-1855. doi: 10.1097/00003246-199909000-00024. PMID: 10507609.            
[16] Bellomo R, Kellum JA, Gandhi CR, Pinsky MR, Ondulik B. The effect of intensive plasma water exchange by hemofiltration on hemodynamics and soluble mediators in canine endotoxemia. Am J Respir Crit Care Med. 2000 May;161(5):1429-1436. doi: 10.1164/ajrccm.161.5.9809127. PMID: 10806135.      
[17] Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E; Hemofiltration and Sepsis Group of the Collège National de Réanimation et de Médecine d'Urgence des Hôpitaux extra-Universitaires. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009 Mar;37(3):803-810. doi: 10.1097/CCM.0b013e3181962316. PMID: 19237881.           
[18] Rimmelé T, Kellum JA. High-volume hemofiltration in the intensive care unit: a blood purification therapy. Anesthesiology. 2012 Jun;116(6):1377-1387. doi: 10.1097/ALN.0b013e318256f0c0. PMID: 22534247. 
[19] Chen X, Ye J, Zhu Z, Xue H, Pu X, Miao X. [Evaluation of high volume hemofiltration according to pulse-indicated continuous cardiac output on patients with acute respiratory distress syndrome]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014 Sep;26(9):650-654. Chinese. doi: 10.3760/cma.j.issn.2095-4352.2014.09.009. PMID: 25230867.          
[20] You B, Zhang YL, Luo GX, Dang YM, Jiang B, Huang GT, et al. Early application of continuous high-volume haemofiltration can reduce sepsis and improve the prognosis of patients with severe burns. Crit Care. 2018 Jul 6;22(1):173. doi: 10.1186/s13054-018-2095-9. PMID: 29980222; PMCID: PMC6035411.
[21] Hu D, Sun S, Zhu B, Mei Z, Wang L, Zhu S, et al. Effects of coupled plasma filtration adsorption on septic patients with multiple organ dysfunction syndrome. Ren Fail. 2012;34(7):834-839. doi: 10.3109/0886022X.2012.684553. Epub 2012 May 18. PMID: 22607100.
[22] Xie J, Yang J. [Effect of continuous high-volume hemofiltration on patients with acute respiratory distress syndrome and multiple organ dysfunction syndrome]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009 Jul;21(7):402-404. Chinese. PMID: 19615130.
[23] Zhang JC, Chu YF, Zeng J, Ren HS, Meng M, Jiang JJ, et al. [Effect of continuous high-volume hemofiltration in patients with severe acute respiratory distress syndrome]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013 Mar;25(3):145-148. Chinese. doi: 10.3760/cma.j.issn.2095-4352.2013.03.007. PMID: 23656766.
[24] Jing F, Wang J, Li M, Chu YF, Jiang JJ, Ding M, et al. The influence of high volume hemofiltration on extra vascular lung water and alveolar-arterial oxygen pressure difference in patients with severe sepsis. Eur Rev Med Pharmacol Sci. 2015 Oct;19(20):3792-3800. PMID: 26531261.
[25] Lehner GF, Wiedermann CJ, Joannidis M. High-volume hemofiltration in critically ill patients: a systematic review and meta-analysis. Minerva Anestesiol. 2014 May;80(5):595-609. Epub 2013 Nov 29. PMID: 24292260.
[26] Morgera S, Slowinski T, Melzer C, Sobottke V, Vargas-Hein O, Volk T, et al. Renal replacement therapy with high-cutoff hemofilters: Impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis. 2004 Mar;43(3):444-53. doi: 10.1053/j.ajkd.2003.11.006. PMID: 14981602.
[27] Junhai Z, Beibei C, Jing Y, Li L. Effect of High-Volume Hemofiltration in Critically Ill Patients: A Systematic Review and Meta-Analysis. Med Sci Monit. 2019 May 28;25:3964-3975. doi: 10.12659/MSM.916767. PMID: 31134957; PMCID: PMC6582686.
[28] Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs. 2003 Sep;27(9):792-801. doi: 10.1046/j.1525-1594.2003.07289.x. PMID: 12940901.
[29] Honore PM, Joannes-Boyau O. High volume hemofiltration (HVHF) in sepsis: a comprehensive review of rationale, clinical applicability, potential indications and recommendations for future research. Int J Artif Organs. 2004 Dec;27(12):1077-1082. doi: 10.1177/039139880402701211. PMID: 15645619.
[30] Peng Z, Singbartl K, Simon P, Rimmelé T, Bishop J, Clermont G, et al. Blood purification in sepsis: a new paradigm. Contrib Nephrol. 2010;165:322-328. doi: 10.1159/000313773. Epub 2010 Apr 20. PMID: 20427984.
[31] Ghani RA, Zainudin S, Ctkong N, Rahman AF, Wafa SR, Mohamad M, et al. Serum IL-6 and IL-1-ra with sequential organ failure assessment scores in septic patients receiving high-volume haemofiltration and continuous venovenous haemofiltration. Nephrology (Carlton). 2006 Oct;11(5):386-393. doi: 10.1111/j.1440-1797.2006.00600.x. PMID: 17014550.
[32] Honore' PM, Joannes-Boyau O, Merson L, Boer W, Piette V, Galloy AC, et al. The big bang of hemofiltration: the beginning of a new era in the third millennium for extra-corporeal blood purification! Int J Artif Organs. 2006 Jul;29(7):649-659. doi: 10.1177/039139880602900702. PMID: 16874669.
[33] Gotmaker R, Peake SL, Forbes A, Bellomo R; ARISE Investigators*. Mortality is Greater in Septic Patients With Hyperlactatemia Than With Refractory Hypotension. Shock. 2017 Sep;48(3):294-300. doi: 10.1097/SHK.0000000000000861. PMID: 28248722.
[34] Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Sepsis Definitions Task Force. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):775-787. doi: 10.1001/jama.2016.0289. PMID: 26903336; PMCID: PMC4910392.
[35] Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care. 2017 Dec;7(1):29. doi: 10.1186/s13613-017-0253-x. Epub 2017 Mar 9. PMID: 28281216; PMCID: PMC5344869.
[36] Levraut J, Ciebiera JP, Jambou P, Ichai C, Labib Y, Grimaud D. Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med. 1997 Jan;25(1):58-62. doi: 10.1097/00003246-199701000-00013. PMID: 8989177.
[37] Liu Y, Ouyang B, Chen J, Chen M, Ma J, Wu J, et al. Effects of different doses in continuous veno-venous hemofiltration on plasma lactate in critically ill patients. Chin Med J (Engl). 2014;127(10):1827-1832. PMID: 24824239.
[38] Cheungpasitporn W, Zand L, Dillon JJ, Qian Q, Leung N. Lactate clearance and metabolic aspects of continuous high-volume hemofiltration. Clin Kidney J. 2015 Aug;8(4):374-377. doi: 10.1093/ckj/sfv045. Epub 2015 Jun 17. PMID: 26251702; PMCID: PMC4515900.
[39] Soliman R, Fouad E, Belghith M, Abdelmageed T. Conventional hemofiltration during cardiopulmonary bypass increases the serum lactate level in adult cardiac surgery. Ann Card Anaesth. 2016 Jan-Mar;19(1):45-51. doi: 10.4103/0971-9784.173019. PMID: 26750673; PMCID: PMC4900403.
[40] Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009 May;29(5):562-577. doi: 10.1592/phco.29.5.562. PMID: 19397464.
[41] Rickard CM, Couchman BA, Hughes M, McGrail MR. Preventing hypothermia during continuous veno-venous haemodiafiltration: a randomized controlled trial. J Adv Nurs. 2004 Aug;47(4):393-400. doi: 10.1111/j.1365-2648.2004.03117.x. PMID: 15271158.
[42] Santiago MJ, López-Herce J, Urbano J, Solana MJ, del Castillo J, Ballestero Y, et al. Complications of continuous renal replacement therapy in critically ill children: a prospective observational evaluation study. Crit Care. 2009;13(6):R184. doi: 10.1186/cc8172. Epub 2009 Nov 23. PMID: 19925648; PMCID: PMC2811926.